Biomechanical study of the effect of a controlled bending on tomato stem elongation: global mechanical analysis.

نویسندگان

  • C Coutand
  • J L Julien
  • B Moulia
  • J C Mauget
  • D Guitard
چکیده

An experiment was designed to apply a controlled bending to a tomato stem and simultaneously to measure its effect on stem elongation. Stem elongation was measured over 2 d until steady and equal rates were obtained for the control and the treated plants. Thereafter, the basal part of the stem was submitted to a transient controlled bending at constant displacement rate using a motorized dynamometer. After load removal, stem elongation was again measured for 2 d. The tested plants were mature (height visible internodes) and only the basal part of the stem, which had already finished elongation, was loaded (hypocotyl and the first three internodes). A few minutes after the application of bending, elongation stopped completely for 60 min. Thereafter it took 120-1000 min to recover a rate of elongation similar to the control. The growth response was exclusively due to the bending of the basal part of the stem. It was shown that the side mechanical perturbations on the roots and on the stem tissues interacting directly with the clamp were not significantly involved on the elongation response. These results give evidence for mechanical perception and plant signalling from the basal stem to the upper elongating zone. However, none of the variables characterizing the global mechanical state of the bent part of the stem (i.e. the maximal force, bending moment, inclination, mean curvature of the stem, stored mechanical energy) could quantitatively explain the variability of the growth response. A more local mechanical analysis is therefore needed to elucidate how the mechanical stimulus is perceived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain mechanosensing quantitatively controls diameter growth and PtaZFP2 gene expression in poplar.

Mechanical signals are important factors that control plant growth and development. External mechanical loadings lead to a decrease in elongation and a stimulation of diameter growth, a syndrome known as thigmomorphogenesis. A previous study has demonstrated that plants perceive the strains they are subjected to and not forces or stresses. On this basis, an integrative biomechanical model of me...

متن کامل

3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces

Strong regions and physical barriers in soils may slow root elongation, leading to reduced water and nutrient uptake and decreased yield. In this study, the biomechanical responses of roots to axial mechanical forces were assessed by combining 3D live imaging, kinematics and a novel mechanical sensor. This system quantified Young's elastic modulus of intact poplar roots (32MPa), a rapid <0.2 mN...

متن کامل

A Zigzag Theory with Local Shear Correction Factors for Semi-Analytical Bending Modal Analysis of Functionally Graded Viscoelastic Circular Sandwich Plates

Free bending vibration analysis of the functionally graded viscoelastic circular sandwich plates is accomplished in the present paper, for the first time. Furthermore, local shear corrections factors are presented that may consider simultaneous effects of the gradual variations of the material properties and the viscoelastic behaviors of the materials, for the first time. Moreover, in contrast ...

متن کامل

The Effects of Simulated Vibration Stress on Plant Height and Some Physical and Mechanical Properties of Coleus blumei Benth

Non-chemical control of plant growth is an important goal for the production of ornamental pot plants. In the present study the effects of simulated vibration on plant height and some physical and mechanical properties of Coleus stem were investigated. The study was conducted as a factorial experiment based on a completely randomized design with three replications. Vibration stresses were perfo...

متن کامل

The Effect of Deformation Temperature on the Mechanical Properties and Microstructural Evolutions of High Manganese TWIP Steel

In this study, the effect of tensile test temperature (148 to 673 K) on the microstructural evolutions and the mechanical properties of high manganese twinning induced plasticity (TWIP) steel with the chemical composition of Fe- 31Mn-3Al-3Si (wt. %) was investigated. XRD, SEM and TEM were used to study the microstructural evolutions. Stacking fault energy (SFE) of the alloy was also calculated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 51 352  شماره 

صفحات  -

تاریخ انتشار 2000